Referenceses |
Azharuddin, M. (2024). Role of India Post Payments Bank (IPPB) to Promote Financial Inclusion in West Bengal. In Perspectives in Finance and Digital Transformations in Business (pp. 85–94). Routledge India. https://doi.org/10.4324/9781003470229-10
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Patil, P., & Dwivedi, Y. K. (2019). An integrated model for m-banking adoption in Saudi Arabia. International Journal of Bank Marketing, 37(2), 452–478. https://doi.org/10.1108/IJBM-07-2018-0183
Baptista, G., & Oliveira, T. (2015). Understanding mobile banking: The unified theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50, 418–430. https://doi.org/10.1016/j.chb.2015.04.024
Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351. https://doi.org/10.2307/3250921
Cai, J., Li, Z., Dou, Y., Li, T., & Yuan, M. (2023). Understanding adoption of high off-site construction level technologies in construction based on the TAM and TTF. Engineering, Construction and Architectural Management, 30(10), 4978–5006. https://doi.org/10.1108/ECAM-05-2022-0439
Chin, W. W. (n.d.). The Partial Least Squares Approach to Structural Equation Modeling. https://www.researchgate.net/publication/311766005
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319–339. https://doi.org/10.2307/249008
Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information & Management, 36(1), 9–21. https://doi.org/10.1016/S0378-7206(98)00101-3
Gebauer, J., Shaw, M. J., & Gribbins, M. L. (2010). Task-Technology Fit for Mobile Information Systems. Journal of Information Technology, 25(3), 259–272. https://doi.org/10.1057/jit.2010.10
Goodhue, D. L., & Thompson, R. L. (1995a). Task-Technology Fit and Individual Performance. MIS Quarterly, 19(2), 213. https://doi.org/10.2307/249689
Goodhue, D. L., & Thompson, R. L. (1995b). Task-Technology Fit and Individual Performance. In Source: MIS Quarterly (Vol. 19, Issue 2).
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Springer International Publishing. https://doi.org/10.1007/978-3-030-80519-7
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202
Hellier, P. K., Geursen, G. M., Carr, R. A., & Rickard, J. A. (2003). Customer repurchase intention. European Journal of Marketing, 37(11/12), 1762–1800. https://doi.org/10.1108/03090560310495456
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Klopping, I. M., & Mckinney, E. (2004a). Extending the Technology Acceptance Model Extending the Technology Acceptance Model and the Task and the Task-Technology Fit Model to Technology Fit Model to Consumer E Consumer E-Commerce Commerce. In Information Technology, Learning, and Performance Journal (Vol. 22, Issue 1).
Klopping, I. M., & Mckinney, E. (2004b). Extending the Technology Acceptance Model Extending the Technology Acceptance Model and the Task and the Task-Technology Fit Model to Technology Fit Model to Consumer E Consumer E-Commerce Commerce. In Information Technology, Learning, and Performance Journal (Vol. 22, Issue 1).
Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The Technology Acceptance Model: Past, Present, and Future. Communications of the Association for Information Systems, 12. https://doi.org/10.17705/1CAIS.01250
Lin, T.-C., & Huang, C.-C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & Management, 45(6), 410–417. https://doi.org/10.1016/j.im.2008.06.004
Mahmoud, H., Ahmed Hussein, M., Jayaraman, G., Mahalakshmi Venkatachalam, D., Mahmoud Sid Ahmed, H., & Ahmed Hussien, M. (n.d.). Adoption of Online Banking Security Measures by customers-Evaluation through Extended Technology Acceptance Model (TAM) and Structural Equation Model (SEM). www.journal-innovations.com
McFarland, D. J., & Hamilton, D. (2006). Adding contextual specificity to the technology acceptance model. Computers in Human Behavior, 22(3), 427–447. https://doi.org/10.1016/j.chb.2004.09.009
Mohammadi, H. (2015). Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Computers in Human Behavior, 45, 359–374. https://doi.org/10.1016/j.chb.2014.07.044
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404–414. https://doi.org/10.1016/j.chb.2016.03.030
Prakash, N. (2018). India Postal Banking Services-A Study on Its Growth. In Article in Sumedha Journal of Management. https://www.researchgate.net/publication/357512416
Rigopoulos, G., Askounis, D., & Prof, A. (2007). Journal of Internet Banking and Commerce A TAM Framework to Evaluate Users’ Perception towards Online Electronic Payments. In Journal of Internet Banking and Commerce (Vol. 12, Issue 3). http://www.arraydev.com/commerce/jibc/
St Joseph, J. V., & Devagiri, C. (n.d.). From Postal Service to Banking: A Paradigm Shift in the Services of India Post. https://www.researchgate.net/publication/375084018
Tam, C., & Oliveira, T. (2016a). Performance impact of mobile banking: using the task-technology fit (TTF) approach. International Journal of Bank Marketing, 34(4), 434–457. https://doi.org/10.1108/IJBM-11-2014-0169
Tam, C., & Oliveira, T. (2016b). Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective. Computers in Human Behavior, 61, 233–244. https://doi.org/10.1016/j.chb.2016.03.016
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly: Management Information Systems, 36(1), 157–178. https://doi.org/10.2307/41410412
Wang, C., Dai, J., Zhu, K., Yu, T., & Gu, X. (2023). Understanding the Continuance Intention of College Students toward New E-Learning Spaces Based on an Integrated Model of the TAM and TTF. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447318.2023.2291609
Wang, Y. S., Wang, Y. M., Lin, H. H., & Tang, T. I. (2003). Determinants of user acceptance of Internet banking: An empirical study. International Journal of Service Industry Management, 14(5), 501–519. https://doi.org/10.1108/09564230310500192
Wang, Y., Wu, M., & Wang, H. (2009). Investigating the determinants and age and gender differences in the acceptance of mobile learning. British Journal of Educational Technology, 40(1), 92–118. https://doi.org/10.1111/j.1467-8535.2007.00809.x
Yen, D. C., Wu, C.-S., Cheng, F.-F., & Huang, Y.-W. (2010). Determinants of users’ intention to adopt wireless technology: An empirical study by integrating TTF with TAM. Computers in Human Behavior, 26(5), 906–915. https://doi.org/10.1016/j.chb.2010.02.005
Yuan, S., Liu, Y., Yao, R., & Liu, J. (2016). An investigation of users’ continuance intention towards mobile banking in China. Information Development, 32(1), 20–34. https://doi.org/10.1177/0266666914522140
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760–767. https://doi.org/10.1016/j.chb.2010.01.013
|