Referenceses |
Almeida, R. L. de, & Neves, R. F. (2022). Stock market prediction and portfolio composition using a hybrid approach combined with self-adaptive evolutionary algorithm. Expert Systems with Applications, 204(April), 117478. https://doi.org/10.1016/j.eswa.2022.117478
Ataman, G., & kahraman, S. (2021). Stock market prediction in brics countries using linear regression and artificial neural network hybrid models. The Singapore Economic Review, 67(02), 635–653. https://doi.org/10.1142/S0217590821500521
Beniwal, M., Singh, A., & Kumar, N. (2023). Forecasting long-term stock prices of global indices?: A forward-validating Genetic Algorithm optimization approach for Support Vector Regression. Applied Soft Computing, 145, 110566. https://doi.org/10.1016/j.asoc.2023.110566
Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., & Khatri, R. K. C. (2022). Predicting stock market index using LSTM. Machine Learning with Applications, 9(May), 100320. https://doi.org/10.1016/j.mlwa.2022.100320
Candra, B. P., Saputra, E. R. S. H., Wicaksono, K., & Kusrini, K. (2018). Decision support system for stock prediction and supplier selection using least square and C4.5 algorithm. Proceedings - 2018 3rd International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2018, 241–246. https://doi.org/10.1109/ICITISEE.2018.8721001
Charalampos M. Liapis *, A. K. * S. K. (2023). Investigating Deep Stock Market Forecasting with. Entropy. https://doi.org/https://doi.org/10.3390/ 25020219
Chen, Y., Wu, J., & Wu, Z. (2022). China’s commercial bank stock price prediction using a novel K-means-LSTM hybrid approach. Expert Systems with Applications, 202(April). https://doi.org/10.1016/j.eswa.2022.117370
Christy Jackson, J., Prassanna, J., Abdul Quadir, M., & Sivakumar, V. (2022). Stock market analysis and prediction using time series analysis. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.11.364
Cristescu, M. P., Nerisanu, R. A., Mara, D. A., & Oprea, S. (2022). Using Market News Sentiment Analysis for Stock Market Prediction. Mathematics. https://doi.org/https://doi.org/ 10.3390/math10224255
Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40(10), 3970–3983. https://doi.org/10.1016/j.eswa.2013.01.012
Gao, Y., Wang, R., & Zhou, E. (2021). Stock Prediction Based on Optimized LSTM and GRU Models. Scientific Programming, 2021. https://doi.org/10.1155/2021/4055281
He, P., Sun, Y., Zhang, Y., & Li, T. (2020). COVID–19’s Impact on Stock Prices Across Different Sectors—An Event Study Based on the Chinese Stock Market. Emerging Markets Finance and Trade, 56(10), 2198–2212. https://doi.org/10.1080/1540496X.2020.1785865
Houssein, E. H., Dirar, M., Abualigah, L., & Mohamed, W. M. (2022). An efficient equilibrium optimizer with support vector regression for stock market prediction. In Neural Computing and Applications (Vol. 34, Issue 4). Springer London. https://doi.org/10.1007/s00521-021-06580-9
Hsing, Y. (2011). Makroekonomske varijable i tržište dionica: Slu?aj hrvatske. Ekonomska Istrazivanja, 24(4), 41–50. https://doi.org/10.1080/1331677X.2011.11517479
Huang, Y., & Vakharia, V. (n.d.). Deep Learning-Based Stock Market Prediction and Investment Model for Financial Management. Journal of Organizational and End User Computing, 36(1), 1–22. https://doi.org/10.4018/JOEUC.340383
Jiao, Y., & Jakubowicz, J. (2017). Predicting stock movement direction with machine learning: An extensive study on S&P 500 stocks. In N. J.-Y., O. Z., S. T., G. R., N. R., W. C., Z. H., B.-Y. R., B.-Y. R., H. X., K. J., C. A., T. J., & T. M. (Eds.), Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017 (Vols. 2018-January, pp. 4705–4713). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/BigData.2017.8258518
Joseph PIOTROSKI., T. J. WONG., T. Z. H. (2015). Political Incentives to Suppress Negative Information?: Evidence. Journal of Accounting Research, 53(2). https://doi.org/10.1111/1475-679X.12071
Karimuzzaman, M., Islam, N., Afroz, S., & Hossain, M. M. (2021). Predicting Stock Market Price of Bangladesh: A Comparative Study of Linear Classification Models. Annals of Data Science, 8(1), 21–38. https://doi.org/10.1007/s40745-020-00318-5
Li, M., Puthal, D., Yang, C., Luo, Y., Zhang, J., & Li, J. (2018). Stock market analysis using social networks. ACM International Conference Proceeding Series. https://doi.org/10.1145/3167918.3167967
Li, X., Yu, Q., Tang, C., Lu, Z., & Yang, Y. (2022). Application of Feature Selection Based on Multilayer GA in Stock Prediction. Symmetry, 14(1415). https://doi.org/https://doi.org/10.3390/sym14071415
Liu, Q., Tao, Z., Tse, Y., & Wang, C. (2022). Stock market prediction with deep learning: The case of China. Finance Research Letters, 46(June), 102209. https://doi.org/10.1016/j.frl.2021.102209
Liu, R., & Vakharia, V. (n.d.). Optimizing Supply Chain Management Through BO-CNN-LSTM for Demand Forecasting and Inventory Management. Journal of Organizational and End User Computing, 36(1), 1–25. https://doi.org/10.4018/JOEUC.335591
Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2020). A systematic review of fundamental and technical analysis of stock market predictions. In Artificial Intelligence Review (Vol. 53, Issue 4). Springer Netherlands. https://doi.org/10.1007/s10462-019-09754-z
Park, H. J., Kim, Y., & Kim, H. Y. (2022). Stock market forecasting using a multi-task approach integrating long short-term memory and the random forest framework. Applied Soft Computing, 114, 108106. https://doi.org/10.1016/j.asoc.2021.108106
Rouf, N., Malik, M. B., Arif, T., Sharma, S., Singh, S., Aich, S., & Kim, H. (2021). Stock Market Prediction Using Machine Learning Techniques?: A Decade Survey on Methodologies , Recent Developments , and Future Directions. Electronics.
Rubio, L., & Alba, K. (2022). Forecasting Selected Colombian Shares Using a Hybrid ARIMA-SVR Model. Mathematics, 10(13). https://doi.org/10.3390/math10132181
Sasi Kiran, J., Dhana Lakshmi, P., Sultana, N., Naga Rama Devi, G., Gothane, S., & Reddy Madhavi, K. (2024). Stock Market Price Prediction Using Sentiment Analysis. In V. Bhateja, P. S. R. Chowdary, W. Flores-Fuentes, S. Urooj, & R. Sankar Dhar (Eds.), Evolution in Signal Processing and Telecommunication Networks (pp. 261–268). Springer Nature Singapore.
Shah, D., & Isah, H. (2019). Stock Market Analysis?: A Review and Taxonomy of Prediction Techniques. ii.
Shen, J., & Shafiq, M. O. (2020). Short ? term stock market price trend prediction using a comprehensive deep learning system. Journal of Big Data. https://doi.org/10.1186/s40537-020-00333-6
Sindhu, M. I., Bukhari, S. M. H., & Hussain, A. (2014). Macroeconomic Factors do influencing Stock Price?: A Case Study on Karachi Stock Exchange. Journal of Economics and Sustainble Development, 5(7), 114–125.
Syukur, A., & Istiawan, D. (2020). Prediction of LQ45 Index in Indonesia Stock Exchange: A Comparative Study of Machine Learning Techniques. International Journal of Intelligent Engineering and Systems, 14(1), 453–463. https://doi.org/10.22266/IJIES2021.0228.42
Venkatanarayana, K., & Satyanarayana, B. (2019). Performance analysis on metaheuristic based hybrid neural network to predict the stock movement. International Journal of Scientific and Technology Research, 8(8), 1686–1692.
Yolcu, O. C., Egrioglu, E., Bas, E., & Yolcu, U. (2022). Multivariate intuitionistic fuzzy inference system for stock market prediction: The cases of Istanbul and Taiwan. Applied Soft Computing, 116, 108363. https://doi.org/10.1016/j.asoc.2021.108363
Yun, K. K., Yoon, S. W., & Won, D. (2021). Prediction of stock price direction using a hybrid GA-XGBoost algorithm with a three-stage feature engineering process. Expert Systems with Applications, 186(March), 115716. https://doi.org/10.1016/j.eswa.2021.115716
Zhou, Y. Y., Liu, C. Z., & Tang, L. (2010). Empirical analysis of influences of fictitious economy on real economy in China. 2010 International Conference on Logistics Systems and Intelligent Management, ICLSIM 2010, 1(1), 305–309. https://doi.org/10.1109/ICLSIM.2010.5461414
Nguyen, Nguyet. (2018), Hidden Markov model for stock trading. International journal of financial studies, Vol. 6 No. 36, Doi:10.3390/ijfs6020036
Nguyen, Nguyet., (2017), An analysis and implementation of the hidden markov model to technology stock prediction, Risks, Vol. 5 No. 62. Doi:10.3390/risks5040062
Hodrick, R. J., & Prescott, E. C. (1997). Postwar US business cycles: an empirical investigation. Journal of Money, credit, and Banking, 1-16.
Parashar, Priyanka. “Support Vector Regression and It’s Mathematical Implementation.” The Startup, 18 June 2020, medium.com/swlh/support-vector-regression-and-its-mathematical-implementation-4800456e4878. Accessed 11 Aug. 2023.
Random Forest Algorithm for Absolute Beginners in Data Science.” Analytics Vidhya, 19 Oct. 2021, www.analyticsvidhya.com/blog/2021/10/an-introduction-to-random-forest-algorithm-for-beginners/. Accessed 11 Aug. 2023.
Manufacturing Sector in India: Market Size, FDI, Govt Initiatives | IBEF. (2022). Www.ibef.org. https://www.ibef.org/industry/manufacturing-sector-india.
|