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Abstract: Remote sensing technology is indispensable for comprehending and monitoring the
Earth’s surface through the acquisition of data from satellite imagery. This literature review delves
into the realm of satellite image processing across various study objectives, employing diverse
learning paradigms. The scope of study encompasses a broad array of applications, including
land cover classification, change detection, object detection, segmentation, image fusion, and
retrieval systems. The methodologies explored in extracting meaningful insights from satellite
data span supervised, unsupervised, semi-supervised, and self-supervised learning techniques.
Supervised learning entails training models with labeled data to categorize and identify specific
features, while unsupervised learning facilitates pattern and structure extraction from unlabeled
data. Bridging the gap between supervised and unsupervised methods, semi-supervised learning
amalgamates labeled and unlabeled data. In contrast, self-supervised learning exploits inherent
data properties for representation learning without manual labeling. By scrutinizing the application
of these learning paradigms across various study objectives in remote sensing, this literature
review offers valuable insights into the progress and challenges in satellite image processing for
comprehending Earth'’s surface dynamics.

Keywords: Remote sensing, semi-supervised learning, Unsupervised learning, self-supervised
learning, Satellite Image Processing, supervised learning

Introduction

manipulation of data collected by these sensors
to extract meaningful information. This process
encompasses a wide range of techniques,
including preprocessing, enhancement,
classification, change detection, and semantic

Remote sensing (Rs) is a powerful tool that has
revolutionized the field of Earth observation and
has become an integral part of many scientific
disciplines [1]. It involves the acquisition of
information about the Earth’s surface by using

sensors mounted on satellites, aircraft, or drones.
This technology has greatly expanded our ability
to study and monitor our planet, providing
valuable insights into various environmental
processes and changes [2]. One of the key
components of remote sensing is satellite image
processing, which involves the analysis and

segmentation. These techniques are used to
identify and interpret features and patterns within
the images, providing a better understanding of
the Earth’s surface and its changes over time [3].

Classification is one of the most widely used
techniques in satellite image processing, which
involves grouping pixels into different categories
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based on their spectral characteristics. This allows
for the mapping of land cover types or study areas,
such as water bodies, urban areas, and forests,
and their identification [4]. Change detection, on
the other hand, is used to detect and monitor
changes in land cover over time, providing valuable
information for environmental monitoring and
management [5]. Semantic segmentation takes this
a step further by not only identifying land cover
types but also distinguishing different objects
within the same class, such as different types of
buildings/vegetation [6].

In recent years, the use of deep learning
techniques in satellite image processing has gained
significant attention. These techniques, such as
supervised, semi-supervised, self-supervised
learning, and unsupervised have shown great
potential in improving the accuracy and efficiency
of image processing tasks[7]. Supervised learning
involves using labeled data to train algorithms to
recognize patterns and features within the images,
while unsupervised learning relies on clustering
algorithms to identify patterns without prior
knowledge. Semi-supervised learning combines
elements of both supervised and unsupervised
learning, while self-supervised learning involves
training algorithms to learn from the data itself,
without the need for labeled data [8].

Remote sensing and satellite image processing
have become indispensable tools for studying
the Earth’s surface and its changes. With the
continuous advancements in technology and the
integration of deep learning techniques, the
potential for these tools to provide valuable
insights and support for various applications,
such as environmental monitoring, land use
planning, disaster management, and many others,
is constantly growing [9-12]. This literature study
aims to provide a comprehensive overview of the
different techniques and applications of remote
sensing and satellite image processing,
highlighting their importance and potential for
future research and development.

Literature Review

Using the IEL (IEEE & IET) online databases, a
systematic literature search was conducted to find

the most recent relevant articles for this
comprehensive review within the past year. After
several attempts, a title’keyword search was
performed in IEL using the following query:
“satellite image processing”, “deep learning-based
satellite image processing”, “classification/object
detection/segmentation/change detection of
remote sensing images using deep learning
models”, “Satellite Image Retrieval”. The search
was also limited to include papers that utilized data
from the most commonly used remote sensing
platforms. This resulted in a total of 262 papers,
which were used as the basis for further analysis.

Out of the initial 262 studies, 150 were from peer-
reviewed journals, with the remaining papers
being conference proceedings that were not
included in this review. After a detailed
examination of the 150 journal papers and an
eligibility assessment, 71 were found to be
unrelated to this review and were subsequently
excluded.

Literature Review from the recent Journal Articles
gathered are used to answer the following
research questions mentioned as follows:

RQ1. What are all the types of learning paradigms
and deep learning models that are commonly used
in satellite image processing?

RQ2. What are all the study targets and study
areas identified using the different types of
learning algorithms?

RQ3. Which technique is considered the
frequently used learning paradigm for the different
study targets?

RQ4. What are the future directions for satellite
image processing using the different learning
paradigms?

Remote sensing techniques have become
increasingly popular in the field of Earth and
environmental studies due to their ability to
gather data from large and inaccessible areas.
These techniques utilize satellite images to
capture and analyze information about the Earth’s
surface and its environment. With the
advancements in technology, researchers have
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been able to use various learning paradigms to
process and interpret these satellite images for
diverse study targets. This literature study aims
to explore the different remote sensing techniques
and learning paradigms that have been utilized in
satellite image processing for anextensive range
of study targets on the ground of Earth and
environmental studies.

Semantic Segmentation

Segmentation in satellite image processing is the
process of dividing an image into smaller,
meaningful parts, allowing for easier analysis and
interpretation of the data. It helps identify
different features and objects in satellite imagery,
such as land cover, buildings, and roads. Table 1
drawn as a case study from the selected papers
illustrates the most commonly used learning
paradigms in the selected journal articles for
semantic segmentation along with their findings
and limitations.

Object Detection

Object detection in satellite image processing is
the process of identifying and locating specific
objects or features within satellite images, using
deep learning [1]. This enables the extraction of
valuable information and insights from the vast

amount of data captured by satellites, making it a
crucial tool in various industries such as
agriculture, urban planning, and disaster
management [2]. Table 2 illustrates the most
commonly used learning paradigms in the
selected journal articles for object detection
along with their findings and limitations.

Change Detection

Change detection, on the other hand, is utilized to
monitor and detect changes in land cover over time,
providing valuable information for environmental
monitoring and management. Table 3 illustrates the
most commonly used learning paradigms in the
selected journal articles for change detection along
with their findings and limitations.

Classification

Classification is one of the most widely used
techniques in satellite image processing, which
involves grouping pixels into different categories
based on their spectral characteristics. This allows
for the identification and mapping of land cover
types such as water bodies, forests, and urban
areas. Table 4 illustrates the most commonly used
learning paradigms in the selected journal articles
for change detection along with their findings and
limitations.

Table 1: Several learning paradigms in segmentation

Ref. Stmdy Target Learning o s

No. (Study Area) Paradigm Findings impation

[1] Landuse Supervised The paperpresents aninnovative | The proposed deep leaming
&Land cover dual-branch deep leaming modelin the papertendsto
mapping (LULC framework designed to misclassify minonty classes
—Forast & efficiently utilize multisensor due to the presence of
Mountain) and multitemporal Bz data, relatively fewlabeled

resulting n enhancedland-cover | samplesin the traiming set,
classification performance leading to overfitting.
compared to existing methods.

2] Change Supervised The study found that the Thelack of contrast with
detection {CIN) proposed Adaptive Fusion othermodels, thereby limits
(Urban) NestedUNet model _ a thorough assessment of

cutperformed othermeodelsin the propozedmodel’s
CD tasks on opticalremote performance.

sensing images, showecasing

improved feature representation,

and accurate identification of

changedregions.
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—

3] Zzzice Snpervisad The proposed lightweisht As highlighted in the paper,
Sxifaction netwark, U-Mzt, demonstrated anatzble limitation of this
£3maw) supsrios paformance in 3zalee | study is the gmission of

l=ad extracrion from non-pr=- polarization fames from
processed symtheric aperturs considsration

radat imazes, providing higher

zocuraEcy, and fficisnoy

comparad o traditional semantic

semmentztion methods

4] Snow Unsupervized The study presents 2 novel The study doss not quite
segEeniation nnzup=nissd 2learithm that zddsess the poranriz] impact
(Bmow) affectively diffsremtiztes of varring atmaspharic

5 betwresn wetd doy smow using conditions an the
Dioal-Polarized synthetic performancs of the
zpeugs rader data propased zl=oridl

I Impenions Suparvized The CroFuselet madal Atmaspheric conditions 22
Snrface affectivaly improves nrhan likely to affect the model's
Extrzcrion imparyious surfscs sxwaction performance
{Urhan} ECCLLECY

[6] | Sesmentation Supervized Tha maltizczle prammid sizve Tha pzpar doss not pravids
{Asricnlturs) madule improves sesmentation | specific resolution details

FocufEcy in B imepes for the zar=llit=
multispaciral imasss nssd

M Flant orgzn Enpervizad The studv successfolly nsed The research was conducted
segmeniztion desp leamins modals 1o sezment | under contyolled conditions,
{Tress) sorshum plant orgens znd limiting its zppliczbility ta

mezsnged phenatypic taits fom | real feld snvironments.
LiDAR 3D point clond data

[5] Zspmentation of | Supervizad Tha malti-look saquence Finding zconsataly
seafloar praceszinznst based on NN catszorized imazery for
Water) and U-Natoutperfonms ather 2A% {image sepmentation iz

2l=orithms in weskly Isbel=d chzllansinz and tims-

s2abed imaze se@mantation CONSMEANE, 35 1T raguines
coasdination with divers
znd gozang graphers 1o
manually survey 3n anss

1 | Landcover Supervisad The study centers an craftinzz | Thecomputational
semmeniztion proficient and resilisnt DFPNet | efficiency of the DPPFNat is
{Urban) tzilasad far land caver not comparsd with ather

semmantation derived fromhish- | existing methads, which is

resolution sarellie imasss =M {mpostEnt 2spect
considaring the szl of
radncinz compuiatiansz]
complexity

[10] | 3D paintclond | Supervised The paper survevs and compares | This study primarily
Seprentztion mmliipls star=of-znt DL madsels | focusss on catezosizingand
{Urban & Trass) oz point cland semantic discussing sxisting 30 pod

szamantztion The rarest ofthiz
study is to daliver 3 sumenany of
sxistinz methods but dossnot
Eppeario pravidea nsw DL
madel

cland s=zmentation
methods but do=s nat
propass a novel modsl ar
zddrass real-time processine
efficisncy
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[11] | Floodmappmg | Supervised The study finds that hghtweight The study's synthesized

(Water) versions ofthe U-Net model floodimages might not
maintain accuracy andnmmuch | perfectly capture the
fasterthanthe baseline model complexity and diversity of
for flood mapping, makingthem | real-world flood events.
excellent options for routine
flood momitonng applications.

[12] | Segmentation Supervised This paper presentsthe The method put foreard

(Urban) segmentationinto hyperspectral | struggles with mtricate
image understanding for the rmage nuances and
mutial time and proposesthe accomplishes precise
spectral-spatial feature pyranud | mstance segmentationin
network to advance the remote sensing images.
presentation of HSI
segmentation

[13] | ImageMatching | Supervised The paperintroduces multi-scale | Difficulties in handling
(Mountain and attention gated residual U-Net, heawvily warpedimages and
Trees) which demonstrates supenor mability to effectively deal

matching accuracy and precision | with rotation and scale
in SAF.-optical image matching. | differences

[14] | Semantic Supervised The paperpresents The paper does not provide
Labeling EfficientUMNet Transfonmer, a clanty on the computational
{Urban) new model that improves the efficiency or nmtime ofthe

semantic segmentation ofhigh- proposedmodel.
resolution images.

[13] | Segmentation Semi- The proposed semi-supervised The paperuses datasetsnot
(Urban & Supervised deep leaming method gpecifically designed for
Forest) significantly improvedimage semi-supervised remote

segmentation accuracy with Tensing semantic

fewer labeled samples. segmentation, inuting the
potential applicability ofthe
findings.

[16] | Semantic Supervised The paperproposed a strategy Imagesin the visible
segmentation combining deep leaming and spectnum are limited to
(Urban) prncipal component analysis for | captunngmformation

UAV Es mmage 33, enhancing within the B.GE bands.

performance. which may leadto
confusionregarding the
spectral charactenistics of
objects.

[17] | Semantic Self-Supervised | Thepaperproposes The paperdid not provide a
segmentation MemoryAdaptNet (MA-Net), a comprehensive comparnson
(58) network for Unsupervised with all existing methods or
(Urban) Domain adaptation 85 of HES dizcuss the model's

magery, which outperformed computational efficiency.
baszeline and existing models.

Source: Primary data
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Table 2: Several learning paradigms in Object Detection

T Ret.

Study Target Learning s T

No. (Study Area) Paradigms Eindings Limifetions

[18] | Ship detection | Self-Supervized The findings highlight the Thelimitation of thiz paperis
(Water) potential oftrammg a thatthe model developedis

highly transferable global prones to robustness issues if the
SAR feature extractor datasetusedis changed.
withoutlabels andits

applicability and

extendability in

downstream few-shot

leaming tasks.

[19] | Ship detection | Supervised This methodis well-suited Loss of valuableinformationin

(Water) for detecting ships m SAR the back end andnuddle ofthe
mmages with sparse targets Nnet due to min-pooling
and can efficiently
differentiate betweennoise
and ship targets in SAR
images.

[20] | Ship detection | Supervised The developedmodel in Performance decline in

(Water) this paper efficiently detects | detecting extreme-size targets
the ships and extends the whenmoving from optical
1dea of feature modelsto SAR images.
mmprovement and feature
combmation to mcrease the
perfonmance

[21] | Ship detection | Supervissd Themodel developedin Label assignment impacts SAR

(Water) this paper generates semi- ship detection performance.
softlabels to leverage Feature fusion canresult in loss
complete mformation and of nformation from original
dark knowledge without feature map.
mismatched annotations
andis used for ship
detection.

[22] | Bulding Supervised This approach surpasses Thizs model doesn’t fit for
displacement traditionalmethods m identifying the bulding
(Urban) detecting various types of displacementsin other cities and

building displacementzand | towmsleadng to robustness
provesto be efficient in 1ssue.

identifying potentially

anomalous buldngs in

Fome through the

utilization of LSTML

[23] | Flood detection | Supervised The proposed fload Flood mapping only provides

(Water) mapping framework nformation on affected areas,
surpasses othermethodsin | not flooded state at different
accuracy and perfonmance. | times. Parameter adjustment
may be complex and require
turing. The proposed model
may not capture significant
changes in penmanent objects.

[24] | Object Supervised The article suggests a Poor performance in detecting
detaction feature aggregationmeodule | small objectsin remote sensing,
Water) called C3n that can capture | asthesetargets are oftenof

long-range dependenciesin
CINNz by mcorporating
higher-order spatial and
channel interactions, sirnilar
to the Transfommer model.

vanoussizes andtakeup only a
few pixels.
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Ship detection
(Water)

Supervised

The proposedmethod
mtegrates convolution and
transfonmers for SAR. ship
detection. - The EetinalNet
architecture iz employed for

Traditional convolutional
models have nutations in
Global-Modelng capabilitv.

The computational cost ofthe
transfonmer grows exponentially

bothregression with large input feature size.
&claszifying tasks.

[26] Ocean front Supervised The paper demonstrates The human-annotated ground-
detection that the Holistically-INested | truth data used fortraining was
(Water) Edge Detection model and | imperfect, and the created

the small Convolutional models were foundto be less
Encoder-Decoder Metwork effectivem detecting

are the most efficient and chlorophyll ocean fronts than
accurate deep leaming sea surface temperature fronts.
maodels for ocean front

detection using uncorrected

satellite imagery.

[Z7] Object Supervised The proposed Hierarchical one potential limitation could be
detection Infonmation Enhancing the generalizability ofthe
(Urbamn) Detector effectively detectorto datasets or object

addreszedthe size-unfitting | detectiontasks outside of the
proposal problemin remote | onestested.
sensing object detection

[Z8] Ship detection Supervised The paper proposes the The developedmodel is prone

(Water) hybrid representation to generalizability and
leaming enhancement computational efficlency 1ssues
based on CMNM for detection | Whenit iz evaluated on diverse
of ship from SAR datasets.

291 Ship detection Supervised This paperpresents a CININ- | The generalizability of the
(Water) basedlightweight SAR proposedmodelis lost when it

detection network for is evaluated onthe other real
multi-class detection, time datasets.
incorporating the adaptive

scale distibution attention

method.

[30] Ship detection Supervised Thepaperdevized a Smalltargets against vegetation

(Water) multitask leaming background are harderto detect.
framework, MLDet, Strong speckle noise in SAR
successfully enhancing Images
Synthetic Aperture Fadar
ship detection accuracy and
robustness in complex
environments.

[31] Crop field Supervised Thepaperproposeda deep | Poor guality traming data
detection learming-based approach for | associated with significant
{Agriculture) detecting and delineating mistakes. Time consuming task

productive crop fields. due to many convoliutional
layers.

32] Weeds Supervised This paperproposada Deep newral network-based
detection graph weed network for methods require large dataset
(Agnculture) weeds detection and fortraining. GPU- based

clazsification. systems arerequired due to high
computational cost.

[33] Ship detection Supervised Thepaperdevelopeda Difficulties in model design for

(Water)

SAF target detection
method called SAR. NAS
which utilizes MNAS to
optimize the network
structure.

SAF target detection.
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[34] | Ship detection | Supervised Ship detectorsbasedonthe | Lower accuracies achievedin
(Water) faster RCNIN able to to the datasets when comparadto
detect all automatic ship theimtial dataset.
[35] | Ship detection | Supervised This paperintroduces a Less features available for simall
(Water) novel B-CNN-based ship targets.
detectionmodel that
leverages the capabilities of
deepleaming and SAF.
imagesto achieve precise
ship target detection.
[36] | Object Supervised This papermtroduces a The evaluation ofthis methodis
detection novelmethod forobject primarily focused on aenal
(Urban) detection called the Single- | datasetsofimagesand datasets

State Rotate Object
Dietector, which utilizes
dense prediction and false
positive suppression
techmques.

of scene texts, which may limit
the generalizability ofthe
results to other domains or
datasets.

Source: Primary data
Table 3: Several learning paradigms in Change Detection

TRet.

Study Target | Learning Findings Limitations

No. | (Study Area) | paradigm

[37] | Land cover Supervised The paper found that the Mot sensitive enough to the edge
change deep enhance module mto of changed objects. Difficulty
detection adjacentlavers ofthe ResNet | captunngting discontimious
(LecD)y (DESNet) model changesin localized objects.
(Urban) significantly improves

semantic CD accuracymPBs
images.

[3%] | Landcover Supervised This paper demonstratesthat | Suitable only for thin cloud-
change its proposed data covered or haze areas. Detection
detection augmentation method errors in thick cloud-covered
{Forest) significantly improves the regions due to the mvisibiity of

accuracy of deforestation ground objects.
detectionin complex
sCenarnos.

[39] | Land cover Supervised The proposed Trple-Stream Eitemporal (images taken at
change Network significantly severalintervals) images with
detection improves accuracy in HES large differences pose a challenge.
(Urban) Bsimage CD, outperfonming | No proper research onmulticlass

nine mainstream methods. ground object types.

[40] | Land cover Supervized The propozedmethod, Curnulative ervors of clazsification
change AMCAN, demonstrated affects change detectionresult.
detection superor hvperspectral Low spatialresolution of
(Agriculture) change detection hyperspectral sensors.

performance comparedto
othermethods onmultiple
datasets, especially for subtle
changes detection.
[41] | Land cover Supervised The paperpresents AERNet, Scarcity ofthe labeled

change
detection
(Urban)

an edge refinement net for
spotting building changesin
Fsimages, demonstrating
strong performance and
generalization.

multispectralimages.
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outperfonmed existing
modelsin detecting active
fires effectively.

[42] | Land cower Supervised The paperintroduces the The paper effectively reduces
change Asymmetric Cross-Attention | computational complexity, but
detection Hierarchical Network, anew | acknowledgeschallenges with
(Urban) approach for change varying definitions of 'change'.

detectionin bitemporal
remote sensing images. This
method combines CININ and
transformers more
efficiently, resulting m
reduced computational
complexity.

[45] | LecD Supervised The proposed Change The paper does not discuss the
(Forest & Guiding Network Immitations of the proposed
Urban) demonstrated superior Change Guiding Network

performance inFsimage CD | specifically.
tasks across multiple
datazets.

[44] | Landcover Supervised The Dual-Attention cross- Themethod struggles to detect
changes fusion context net effectively | subtle object changes on datasets
detection detects Bs changes, with low spatial resolution.
(Forest) outperfonmning othermethods

in comparative experiments.

[45] | Landcowver Semi- The paperintroduces an Scarcity ofhyperspectral image
change Supervised effective hyperspectral CD data.Need formathematically
detection methodusing Senm- sophisticated re gulanzers.
[Agniculture) supervised graph neural nets

and Convex deep leaming
(DL

[46] | Land cower Supervized Iterative tramming sample Lacks sensitivity towards the
change augmentation improves edges of altered objects.
detection change detectionin land
{Forest) cover accuracy with Deep

leaming techniques.

[47] | Landcover Supervised The mtegration of the Secarcity ofthe labeled
change nltiscale mformation nltispectralimags data.
detection module, position channel
{Forest) attention module (PCANM).

and change gradient ;inde
module (CGGM) within the
CININ architecture
significantly improvedthe
detection perfonmance.

[48] | Time seres Supervised The paperpresents a deep Thelack ofreal training datais
analysis and leaming-based framnework mentioned as a imitation, butno
change SAR-TSCC for detecting and | furtherinformationis provided on
detection analyzinglong-time series howthis linitation was addressed.
(T3CC) SAF image changes with It doesn’t discuss the
(Water & high accuracy. generalizability of the proposed
Urban) framework to different geographic

areas of SAR data.

[49] | LeeD Self- supervised | Thepaperdevelopedan The paper does not thoroughly
(Urban and effective CD method for Bs discuss potentialimitations. such
Forest) images, enhancing accuracy asthe method's perfonmance in

by utilizing Self-supervised different types of environmental
leaming and Vanational settings or scalability issues.
infonmation Bottleneck

theory.

[30] | Time series Supervised Using temporal data from The paper does not discuss
analvsis WIIESimages, the proposed | potentiallimmtations such as the
{Forest) transformer network mpact of clond cover on

detection accuracy.
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[31] | Landcover Supervised Thenovel CNIN-based triplet | The complexity of the method
change transformer framework affects practicability. Difficulty in
detection outperfonms othermodelsin explonng middle andlong-range
(Water & hyperspectralimage change dependenciesin hyperspectral
Agnculture) detection with competitive images.

computational efficiency.

[32] | Change Supervised The paper contnbutes to the The paperdoesn’t address the
detection field of PolSAFR. change limitations of reusing labeled
(Water & detection by proposing a zamples and the model's
Forest) novelmethod and evaluating | effectivensss and generalization.

its performance against
existing methods and
distance measures.

Source: Author

Table 4: Several Learning Paradigms in Classification

Ref. | (Study Area) Learning Findings Limitations
No. | Study Target | Paradigm
[33] | (Urban) Serm- The paperproposes a CNN The model struggles with
OBIA Supervised model for the scene distinguishing between similar
classification ofunlabelled classes and fails to acourately
multispectral ima ges using reprasent differsnces in local
multilevel pseudo labels. details.
[34] | {Urban) Semi- The papermtroduces a serm- Pzeudo-labels determined by
LULC Supervised supervisedlong-tail CNN neural networks may not
modelthatmcorporatesspatial | ensure satisfactory accuracy.
neighborhood information for
hvperspectralimage
classification. Thiz approach
efficiently extracts and
mtegrates features from
unbalanced hyperspectral data.
[353] | (Urban& Supervised The paper suggests anew Granules with equalroughness
Forest) model, AGCNN, for Bsimage | andmaximum overlying of
LULC classification that solves the grammles canleadto mis-
problem of fixed CNIN and classification.
time-consuming trainmng.
[36] | (Urban) Supervised The paperintroduces an The proposed model
LULC adaptive rugration demonstrates promising
collaborative networlk (AMC- results in tenms of accuracy,
Net) designed for multimodal while ensuring accuracy its
Esimage classification. This tirneliness is relatively low.
network employs an attribute This suggests that the method
migration strategy {AMS) to may be computationally
mitigate the representationgap | mtensive or slow, which could
betweenmultispectral (WMS) be a limitation for real-time
and panchromatic {PAN) applications.
images, thereby enhancing the
guality and snmilanty between
the two modalities.
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Water)
LULC

scale segmentation method for
post-processing to improve the
fragmentation of classification
results. This methodhelpsin
combininglabels across class
boundares.

[57] | (Urban) Unsupervised This paper offers a new class- The datasetsusedin the paper

LULC wise domainadaptionmethod | it the generalizabihty of the
forland cover classification, results to other regions aparn
solving the overlapping classes | from India. sri lanka, and
issue in existing methods. The Bangladesh.
deep Siamese network-based
solution proved effective on
benchmark datasets.

[5%] | (Urban) Supervised The paperhighlights the The computational

LULC potential of HES datain requirements and efficiency of
identifying ground objectsand | the framewortkmav needtobe
addressesthe mmitations of evaluatedmlarger-scale
existing methods in preserving applications.
the integnty of sround objects
under the cloud using a general
nmltimodal trans former
framework, which assigns
unique labels to each pixel on
its ground cover.

[39] | {(Agnculture & | Unsupervised Unsupervised mformationis The paper focuses on
Urban) usedto help prevent overfitting | hyperspectralimage
LULC in a classification model for clazsification with few

hyperspectralimages, which training samples but it does

can occur dueto limited data. not addresstheissue of class
imbalance, whichis common
in HS data and can affect the
performance of claszification
algonithms.

[60] | (Urban) Supervised A new module called Inductive | Alarge amount oftraming
Scene Shifted Window Multthead data isrequired forworthy
claszsification Self-Attention (SW-MBA) 1s results. Two stream structures

proposed, which combines with msufficient mformation
CNN to improve its nductive nteraction. Too many
bias. parameters inthe method.

[61] | (Urban & Supervised The paperhighhghts the The papermentions that
Forest) hmitations of existing SHAPi: a computationally
LULC explanations in some cases, expensive explainable AT

such asbeing limited to technique, butit doesnot
specific channels andnot elaborate on any specific
nvestigating the impactof hmitations or challenges
important mformation from associated withits use.
other channels

[62] | (Urban & Supervized The paperpresents a method The limitation of this paperis
Forest) that combines pseudo labeling that the pseudo-labels
LULC and spectralindexing determmined by CNIN may not

techniquesto refine labels in ensure the required accuracy.
multimodal data, specifically
images from different dates.
This approach enhancesthe
performance ofthe fine-
grained dual network by
addressmgthe challenge of
coarse segmentationin deep
leaming models.
[63] | (Urban, Forest, | Supervised The paperproposes a small- The proposed approachhas

limitations for practical
application.
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[64] | (Urbané& Supervised Proposed scheme for land The datasetsusedm this paper
Forest) cover classification using lack more complex scenaros,
LULC interactive segmentation which mavy limit the

combining CWN-based method | generalizability of the

with user-guided segmentation, | proposedmethod. Manyland

aiming for improved accuracy | coverdatasets are annotated

andreduced manual effort. with multiple categones on
the samemage, which can
leadto animbalance between
categones and potentially
affect the performance ofthe
model.

[63] | (Urban) Semi-supervised | Thepaperintroduces a Method | One drawback ofthe proposed
LULC forclassifying 3AR datausng | methodisits dependency on

superpixels and a graph-based | superpixels, as maccurate

modelto account for statistical | superpixels canresult m

complexities. mcorrect classification
boundaries.

[66] | (Forest & Unsupervised M3ISPADA iz anew The paper doesn't explore
Agnculture) framework thatuses CINNs to domam adaptationmvolving
LULC adaptremote sensing data different sensors or

collected at different times for | geographical areas, focusing
land covermapping, despite solely on domain adaptation
varying weather or climate acrossperiods.

conditions:

[67] | (Water) Semi-supervised | This paperproposesa The model's effectivenessmay

OBIA Multitask-generative behmited due tothe lack of
adversanalNet model for oil abundarnt and diverse oil spill
spill detection, which optimizes | datasets fortraining,
oil spill classification and
segmentation somultaneously
despite limited training
samples.

[68] | (Urban) Supervised This paperintroduces NNCNet, | Thelmitations of the paper

LULC a methodthat improves include dependence onlarge
hyperspectral and LiDAFE. data datasets for achieving
classification through the improved performance and the
utilization of nearest neighbor- scalability of contrastive
based contrastiveleaming and | leaming with varying sizes of
a bilinear attention fusion training sets.
module. This approach
effectively tacklesthe izssue of
hmited labeled data.

[697 | (Urban) Supervised The paperpresents a CNIMN- Despite increasing

LULC basednowvel approachto classification accuracy, the
improving land-cover novelapproach propozedin
classification in hyvperspectral the paper demands more time
remote-sensing images. While due toits iterative nature,
it outperformed othermethods, | makingit less time-efficient
it could be labor-intensive due for practical applications.
to the sample generation
process.

[707 | (Urban) Supervised The paper presents The paper does not fully
LULC Pseudolabel-Based Unreliable discuss how optimal data

Sample Leaming for
hyperspectralimage
classification, leveraging
unreliable unlabeled samples
via contrastive learmng while
maintaining the imitation of
pseudolabel quality.

enhancement methods for
contrastive leaming canbe
designied, which may avoid
potential itma ge distortions and
improve model trammng,
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Domain Adwversanal Neural
Network, for temporally
adaptingland-covermapping
modelsvia adversanal and self-
traming leaming, addressing
challenges m data vanability
overtime.

[71] | (Urbam) Supervised This paperintroduced Factors such as computational
LULC supervisedleaming basedon complexity, sensitivity to
spectralmasking for hyperparameters, or
hyperspectralimage applicability to other datasets
claszification, improving are potentially areasof
feature extraction and CONCE.
classification accuracy.
[72] | (Urban & Fog) | Supervised This paperproposes arobust This paper's imntations
LULC network for Land Cover include insufficient
Classificationin foggy classification accuracy for
conditions, significantly building roofs in dense fog
improving classification andrelatively low efficiency
accuracy. in handling foggy conditions.
[73] | (Urbam) Supervised The paperintroduces a single- The solution proposed in the
LULC source domain expansion paperheavilyrelies on
network, a novel framework hyperparameter tuning, which
for cross-scenecross- canbe complex and time-
hyperspectralimage consurming. Its performance in
classification, which diverse real-world applications
significantly mmproves remamsuntested.
classification accuracy despite
dormain shift.
[74] | (Urbam) Unsupervised The paper addressesthe The paperlacks an automatic
LULC mefficiency of previous mechamsmto decide the
hyperspectralimage feature optimal number of superpixels
extraction methods to handle for segmentation and sees the
mixed objects/noise. by potentialto enhance the
proposing a Superpixelwise perfonmance of feature
unsupervised Linear extraction.
discrminant analvsis (33-
ULDA) model formore
effective extraction and
classification of features.
[75] | (Water & Supervised The papermtroduces a The model's performance can
Forest) Spectral-Spatial Generative beimpactedbyvimage
LULC Adversarial Network (GAN) registration inaccuracies,
forsuper-resolution land cover | vanationsm scale factor, and
mapping, aiming to enhance dealing with mixed pixels.
accuracy in addressing mixed
pixel challenges.
[76] | (Urban) Supervised The paperintroduces a novel The paperdoes not adequately
LULC open-set hyperspectralimage address how the choice of
classification framework that hyperparameters influences
enhances feature space performance, and the method
discriminability, improving requires extensive
classification accuracy and computational resources.
bettermanagng unknown
classes.
[771 | (Agnculture) Semi-supervised | The papermtroduces a new The method mught struggle
LULC frameworl, Spatially Aligned with significant changesin

landscape andland-coverclass
imbalanceinthe source data.
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forland cover clazsification in
multispectralimages,
leveraging wavelet transfonm
and attention mechamsms to

[TE] | (Urban) Supervised The papermntroduces ViT-CL, The paper does not discuss the
LULC anew methodthat combimnes computational cost or time
WVision Transfonmerwith efficiency oftheir proposed
Supervised contrastiveleaming | model, ViT-CL. which could
forefficient F.s image scene be significant.
classification and demonstrates
its efficacy through multiple
expernments.
[79] | (Urban) Supervised This paperpresents a wavelet- Omne potential imitation ofthe
LULC mspired attention-based Cnn paperis its perfonmance and

generalizability if appliedto
different tvpes ofimagery
datasets or data with different
charactenstics.

mmprove spectral feature
modeling, particularly with
lrmited traming samples.

Source: Author
Results and Discussions

In this section, the answers to the research
questions are provided with answers based on
the case studies chosen from the selected papers.

Learning paradigms, deep learning models and
their frequency

In satellite image processing, various learning
paradigms are commonly used to address
different tasks (RQ1). Based on the provided data
in the all above tables, the following types of
learning paradigms are commonly employed:

Study Target
Classification Object Detection Segmentation Change Detection

»

@

Supervised Learning
Unsupervised Learning -

* Unsupervised learning

* Semi-supervised learning
* Self-supervised learning
* Supervised Learning

Each of these paradigms serves different purposes
and is applied to tasks such as change detection,
segmentation, object detection, and classification
in satellite image processing as shown in below
Figure 1 along with their frequency of occurrence
in the selected papers (RQ3).

Frequency of Learning Paradigms for Different Study Targets

o
wn

Self-Supervised Leaming -
Semi-Supervised Learning -

Leaming Paradigms

Figure 1: Frequency of Occurrence of the Learning Paradigms for Different Study Targets

Source: Author
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Figure 2 shows that CNN is the predominant
model utilized for analyzing remote sensing

images, with Ensemble models, Unet models, and
other models following closely behind.

ECNN

W ResNet

= Autoencoder
GAN

E Unet

mLSTM

BRNN

B Other

Figure 2: Frequency of Occurrence of the Deep Learning Algorithms for Different Study
Targets

Source: Author

The Residual Network (ResNet) model, the
Generative Adversarial Network (GAN) model,
and the Autoencoder model also make
appearances, while the triple stream net model
and autoencoder model are less frequently used.
CNN stands out as a model with distinct qualities
that make it particularly suitable for handling
multiband remote-sensing image data. The
category of ‘other’ models encompasses MLP,
YOLO, Triple stream Net, LDA, Fuzzy, Invertible
NN, Point Net, and other black box models with
optimization techniques.

1. Study targets and study areas

From the provided data in Figure 3 collected from
the case studies, various study targets within
the field of Rs and image analysis are evident
(RQ2). LULC analysis stands out with a
frequency of 24, indicating its importance in
understanding landscape dynamics and human-
environment interactions. Semantic segmentation

with a frequency of 17 involves classifying each
pixel in an Rs image into a precise group for
detailed mapping. Object Detection, appearing
19 times, focuses on identifying and locating
objects within an image, which is crucial for tasks
such as infrastructure monitoring or disaster
assessment. Land cover change detection,
represented by a frequency of 13, involves
comparing images of the same zone taken at
dissimilar times to detect changes in land cover
types, offering insights into environmental trends
and urbanization patterns. Other targets include
Object-Based Image Analysis (OBIA) and
Temporal Analysis, each occurring twice,
highlighting their roles in feature extraction and
monitoring temporal changes, respectively. These
study targets collectively contribute to the
comprehensive analysis and understanding of
the Earth’s surface and its
transformations over time.
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Source: Author

The provided data in Figure 4 collected from the
case studies reveals the distribution of study areas
within the domain of remote sensing and
geographic analysis. Urban areas emerge as the
most frequently studied, with a frequency of 41,
underscoring the significance of understanding
urban dynamics, land use patterns, and the impact
of human settlements on the environment. Forest
areas, with a frequency of 17, represent another
focal point, reflecting the importance of
monitoring forest ecosystems, biodiversity
conservation, and sustainable forestry practices.
Agriculture, with a frequency of 8, indicates the

Source: Author
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Figure 3: Frequency of Different Study Targets
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attention given to agricultural landscapes, crop
monitoring, and food security assessments.
Water bodies, represented by a frequency of 22,
are crucial study areas for water resource
management, hydrological modeling, and aquatic
ecosystem monitoring. The category “Other,”
encompassing features like fog, mountains, and
trees, signifies a diverse range of study areas,
each with its unique characteristics and
ecological significance. Together, these study
areas provide a comprehensive framework for
analyzing and understanding the Earth’s diverse
landscapes and ecosystems.



2. Future Direction

The collected data presents a comprehensive
overview of the current landscape within remote
sensing and image analysis, highlighting key
study targets and areas of focus (RQ4). Moving
forward, future research directions could involve
integrating advanced machine learning
techniques with high-resolution satellite imagery
to enhance the accuracy and efficiency of land
cover classification and object detection tasks.
Additionally, there is a growing need to explore
the applications of Remote sensing technologies
in emerging targets such as precision agriculture,
urban planning, and climate change monitoring.
Furthermore, efforts can be directed towards
developing innovative methodologies for multi-
temporal analysis to better understand temporal
changes in land cover dynamics and
environmental processes. Collaboration across
disciplines, including remote sensing, computer
vision, and environmental science, will be crucial
for addressing complex research questions and
leveraging the full potential of remote sensing
data for sustainable development and
environmental management. Embracing open data
initiatives and promoting data-sharing practices
will also facilitate broader access to satellite
imagery and encourage collaborative research
efforts aimed at addressing global challenges
related to land cover change, land use, and natural
resource management.

3. Conclusion& Future Scope

In conclusion, remote sensing techniques have
become an integral tool for studying diverse
targets using various learning paradigms.
Through the use of remote sensing images and
advanced techniques for processing, researchers
can gather valuable information and insights
about the Earth’s surface, atmosphere, and
oceans. From monitoring environmental changes
to mapping LULC, remote sensing has greatly
enhanced our understanding of the world we live
in. However, as technology continues to
advance, there is still much to be explored and
discovered in this field. By further developing
and integrating different learning paradigms, we

can continue to push the boundaries of Remote
sensing and expose its full potential for a wide
range of applications. Remote sensing will
continue to be important for solving global
problems and making decisions in the future. As
such, researchers and practitioners need to stay
updated on the latest advancements and
collaborate to further advance this field of study.
With continued efforts and advancements, remote
sensing will continue to revolutionize our
understanding of the Earth and help us make more
informed and sustainable decisions for our planet.
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