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Abstract: Remote sensing technology is indispensable for comprehending and monitoring the
Earth’s surface through the acquisition of data from satellite imagery. This literature review delves
into the realm of satellite image processing across various study objectives, employing diverse
learning paradigms. The scope of study encompasses a broad array of applications, including
land cover classification, change detection, object detection, segmentation, image fusion, and
retrieval systems. The methodologies explored in extracting meaningful insights from satellite
data span supervised, unsupervised, semi-supervised, and self-supervised learning techniques.
Supervised learning entails training models with labeled data to categorize and identify specific
features, while unsupervised learning facilitates pattern and structure extraction from unlabeled
data. Bridging the gap between supervised and unsupervised methods, semi-supervised learning
amalgamates labeled and unlabeled data. In contrast, self-supervised learning exploits inherent
data properties for representation learning without manual labeling. By scrutinizing the application
of these learning paradigms across various study objectives in remote sensing, this literature
review offers valuable insights into the progress and challenges in satellite image processing for
comprehending Earth’s surface dynamics.
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Introduction

Remote sensing (Rs) is a powerful tool that has
revolutionized the field of Earth observation and
has become an integral part of many scientific
disciplines [1]. It involves the acquisition of
information about the Earth’s surface by using
sensors mounted on satellites, aircraft, or drones.
This technology has greatly expanded our ability
to study and monitor our planet, providing
valuable insights into various environmental
processes and changes [2]. One of the key
components of remote sensing is satellite image
processing, which involves the analysis and

manipulation of data collected by these sensors
to extract meaningful information. This process
encompasses a wide range of techniques,
including preprocessing, enhancement,
classification, change detection, and semantic
segmentation. These techniques are used to
identify and interpret features and patterns within
the images, providing a better understanding of
the Earth’s surface and its changes over time [3].

Classification is one of the most widely used
techniques in satellite image processing, which
involves grouping pixels into different categories
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based on their spectral characteristics. This allows
for the mapping of land cover types or study areas,
such as water bodies, urban areas, and forests,
and their identification [4]. Change detection, on
the other hand, is used to detect and monitor
changes in land cover over time, providing valuable
information for environmental monitoring and
management [5]. Semantic segmentation takes this
a step further by not only identifying land cover
types but also distinguishing different objects
within the same class, such as different types of
buildings/vegetation [6].

In recent years, the use of deep learning
techniques in satellite image processing has gained
significant attention. These techniques, such as
supervised, semi-supervised, self-supervised
learning, and unsupervised have shown great
potential in improving the accuracy and efficiency
of image processing tasks[7]. Supervised learning
involves using labeled data to train algorithms to
recognize patterns and features within the images,
while unsupervised learning relies on clustering
algorithms to identify patterns without prior
knowledge. Semi-supervised learning combines
elements of both supervised and unsupervised
learning, while self-supervised learning involves
training algorithms to learn from the data itself,
without the need for labeled data [8].

Remote sensing and satellite image processing
have become indispensable tools for studying
the Earth’s surface and its changes. With the
continuous advancements in technology and the
integration of deep learning techniques, the
potential for these tools to provide valuable
insights and support for various applications,
such as environmental monitoring, land use
planning, disaster management, and many others,
is constantly growing [9-12]. This literature study
aims to provide a comprehensive overview of the
different techniques and applications of remote
sensing and satellite image processing,
highlighting their importance and potential for
future research and development.

Literature Review

Using the IEL (IEEE & IET) online databases, a
systematic literature search was conducted to find

the most recent relevant articles for this
comprehensive review within the past year. After
several attempts, a title/keyword search was
performed in IEL using the following query:
“satellite image processing”, “deep learning-based
satellite image processing”, “classification/object
detection/segmentation/change detection of
remote sensing images using deep learning
models”, “Satellite Image Retrieval”. The search
was also limited to include papers that utilized data
from the most commonly used remote sensing
platforms. This resulted in a total of 262 papers,
which were used as the basis for further analysis.

Out of the initial 262 studies, 150 were from peer-
reviewed journals, with the remaining papers
being conference proceedings that were not
included in this review. After a detailed
examination of the 150 journal papers and an
eligibility assessment, 71 were found to be
unrelated to this review and were subsequently
excluded.

Literature Review from the recent Journal Articles
gathered are used to answer the following
research questions mentioned as follows:

RQ1. What are all the types of learning paradigms
and deep learning models that are commonly used
in satellite image processing?

RQ2. What are all the study targets and study
areas identified using the different types of
learning algorithms?

RQ3. Which technique is considered the
frequently used learning paradigm for the different
study targets?

RQ4. What are the future directions for satellite
image processing using the different learning
paradigms?

Remote sensing techniques have become
increasingly popular in the field of Earth and
environmental studies due to their ability to
gather data from large and inaccessible areas.
These techniques utilize satellite images to
capture and analyze information about the Earth’s
surface and its environment. With the
advancements in technology, researchers have
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been able to use various learning paradigms to
process and interpret these satellite images for
diverse study targets. This literature study aims
to explore the different remote sensing techniques
and learning paradigms that have been utilized in
satellite image processing for anextensive range
of study targets on the ground of Earth and
environmental studies.

Semantic Segmentation

Segmentation in satellite image processing is the
process of dividing an image into smaller,
meaningful parts, allowing for easier analysis and
interpretation of the data. It helps identify
different features and objects in satellite imagery,
such as land cover, buildings, and roads. Table 1
drawn as a case study from the selected papers
illustrates the most commonly used learning
paradigms in the selected journal articles for
semantic segmentation along with their findings
and limitations.

Object Detection

Object detection in satellite image processing is
the process of identifying and locating specific
objects or features within satellite images, using
deep learning [1]. This enables the extraction of
valuable information and insights from the vast

amount of data captured by satellites, making it a
crucial tool in various industries such as
agriculture, urban planning, and disaster
management [2]. Table 2 illustrates the most
commonly used learning paradigms in the
selected journal articles for object detection
along with their findings and limitations.

Change Detection

Change detection, on the other hand, is utilized to
monitor and detect changes in land cover over time,
providing valuable information for environmental
monitoring and management. Table 3 illustrates the
most commonly used learning paradigms in the
selected journal articles for change detection along
with their findings and limitations.

Classification

Classification is one of the most widely used
techniques in satellite image processing, which
involves grouping pixels into different categories
based on their spectral characteristics. This allows
for the identification and mapping of land cover
types such as water bodies, forests, and urban
areas. Table 4 illustrates the most commonly used
learning paradigms in the selected journal articles
for change detection along with their findings and
limitations.
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Source: Primary data
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• Unsupervised learning

• Semi-supervised learning

• Self-supervised learning

• Supervised Learning

Each of these paradigms serves different purposes
and is applied to tasks such as change detection,
segmentation, object detection, and classification
in satellite image processing as shown in below
Figure 1 along with their frequency of occurrence
in the selected papers (RQ3).

Results and Discussions

In this section, the answers to the research
questions are provided with answers based on
the case studies chosen from the selected papers.

Learning paradigms, deep learning models and
their frequency

In satellite image processing, various learning
paradigms are commonly used to address
different tasks (RQ1). Based on the provided data
in the all above tables, the following types of
learning paradigms are commonly employed:

Source: Author

Figure 1: Frequency of Occurrence of the Learning Paradigms for Different Study Targets

Source: Author
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Figure 2 shows that CNN is the predominant
model utilized for analyzing remote sensing

images, with Ensemble models, Unet models, and
other models following closely behind.

The Residual Network (ResNet) model, the
Generative Adversarial Network (GAN) model,
and the Autoencoder model also make
appearances, while the triple stream net model
and autoencoder model are less frequently used.
CNN stands out as a model with distinct qualities
that make it particularly suitable for handling
multiband remote-sensing image data. The
category of ‘other’ models encompasses MLP,
YOLO, Triple stream Net, LDA, Fuzzy, Invertible
NN, Point Net, and other black box models with
optimization techniques.

1. Study targets and study areas

From the provided data in Figure 3 collected from
the case studies, various study targets within
the field of Rs and image analysis are evident
(RQ2). LULC analysis stands out with a
frequency of 24, indicating its importance in
understanding landscape dynamics and human-
environment interactions. Semantic segmentation

with a frequency of 17 involves classifying each
pixel in an Rs image into a precise group for
detailed mapping. Object Detection, appearing
19 times, focuses on identifying and locating
objects within an image, which is crucial for tasks
such as infrastructure monitoring or disaster
assessment. Land cover change detection,
represented by a frequency of 13, involves
comparing images of the same zone taken at
dissimilar times to detect changes in land cover
types, offering insights into environmental trends
and urbanization patterns. Other targets include
Object-Based Image Analysis (OBIA) and
Temporal Analysis, each occurring twice,
highlighting their roles in feature extraction and
monitoring temporal changes, respectively. These
study targets collectively contribute to the
comprehensive analysis and understanding of
the Earth’s surface and its
transformations over time.

Figure 2: Frequency of Occurrence of the Deep Learning Algorithms for Different Study
Targets

Source: Author
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Figure 3: Frequency of Different Study Targets

Source: Author

The provided data in Figure 4 collected from the
case studies reveals the distribution of study areas
within the domain of remote sensing and
geographic analysis. Urban areas emerge as the
most frequently studied, with a frequency of 41,
underscoring the significance of understanding
urban dynamics, land use patterns, and the impact
of human settlements on the environment. Forest
areas, with a frequency of 17, represent another
focal point, reflecting the importance of
monitoring forest ecosystems, biodiversity
conservation, and sustainable forestry practices.
Agriculture, with a frequency of 8, indicates the

attention given to agricultural landscapes, crop
monitoring, and food security assessments.
Water bodies, represented by a frequency of 22,
are crucial study areas for water resource
management, hydrological modeling, and aquatic
ecosystem monitoring. The category “Other,”
encompassing features like fog, mountains, and
trees, signifies a diverse range of study areas,
each with its unique characteristics and
ecological significance. Together, these study
areas provide a comprehensive framework for
analyzing and understanding the Earth’s diverse
landscapes and ecosystems.

Figure 4: Frequency of the Study Areas

Source: Author
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2. Future Direction

The collected data presents a comprehensive
overview of the current landscape within remote
sensing and image analysis, highlighting key
study targets and areas of focus (RQ4). Moving
forward, future research directions could involve
integrating advanced machine learning
techniques with high-resolution satellite imagery
to enhance the accuracy and efficiency of land
cover classification and object detection tasks.
Additionally, there is a growing need to explore
the applications of Remote sensing technologies
in emerging targets such as precision agriculture,
urban planning, and climate change monitoring.
Furthermore, efforts can be directed towards
developing innovative methodologies for multi-
temporal analysis to better understand temporal
changes in land cover dynamics and
environmental processes. Collaboration across
disciplines, including remote sensing, computer
vision, and environmental science, will be crucial
for addressing complex research questions and
leveraging the full potential of remote sensing
data for sustainable development and
environmental management. Embracing open data
initiatives and promoting data-sharing practices
will also facilitate broader access to satellite
imagery and encourage collaborative research
efforts aimed at addressing global challenges
related to land cover change, land use, and natural
resource management.

3. Conclusion& Future Scope

In conclusion, remote sensing techniques have
become an integral tool for studying diverse
targets using various learning paradigms.
Through the use of remote sensing images and
advanced techniques for processing, researchers
can gather valuable information and insights
about the Earth’s surface, atmosphere, and
oceans. From monitoring environmental changes
to mapping LULC, remote sensing has greatly
enhanced our understanding of the world we live
in. However, as technology continues to
advance, there is still much to be explored and
discovered in this field. By further developing
and integrating different learning paradigms, we

can continue to push the boundaries of Remote
sensing and expose its full potential for a wide
range of applications. Remote sensing will
continue to be important for solving global
problems and making decisions in the future. As
such, researchers and practitioners need to stay
updated on the latest advancements and
collaborate to further advance this field of study.
With continued efforts and advancements, remote
sensing will continue to revolutionize our
understanding of the Earth and help us make more
informed and sustainable decisions for our planet.
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